15. FUNCIONES ESPECIALES Y CARÁCTER DE DIRICHLET

15.1 Funciones Aritméticas

1.1 Funciones Aditivas y Multiplicativas.

Una función aritmética es una función de valores complejos definida en los enteros positivos.

Decimos que f es una función aditiva si

$$f(mn) = f(m) + f(n), mcd(m,n) = 1$$

y es totalmente aditiva si no hay restricción para m y n.

Decimos que f es una función multiplicativa si

$$f(mn) = f(m)f(n), mcd(m,n) = 1$$

y si es cierto para todo $m \ y \ n$, decimos que f es totalmente multiplicativa.

Sean f y g dos funciones aritméticas tales que si f(1) = 1 y g(1) = 0, entonces

- 1. f es multiplicativa si $f(p_1^{e_1} \cdot ... \cdot p_r^{e_r}) = f(p_1^{e_r}) \cdot ... \cdot f(p_r^{e_r})$ y si es multiplicativa, es totalmente multiplicativa si $f(p_1^{e_1} \cdot ... \cdot p_r^{e_r}) = (f(p_1))^{e_1} \cdot ... \cdot (f(p_r))^{e_r}$.
- 2. g es aditiva si $f(p_1^{e_1} \cdot ... \cdot p_r^{e_r}) = f(p_1^{e_1}) + ... + f(p_r^{e_r})$ y si es aditiva, es totalmente aditiva si $f(p_1^{e_1} \cdot ... \cdot p_r^{e_r}) = e_1 f(p_1) + ... + e_r f(p_r)$.

1.2 Función Número de Divisores $\tau(n)$.

El teorema fundamental de la aritmética dice que, cada entero n>1 se puede representar como un producto de factores primos de forma única, salvo el orden de sus factores. Si n se descompone en $n=p_1^{e_1}\cdot p_2^{e_2}\cdot ...\cdot p_r^{e_r}$ entonces cualquier f multiplicativa verifica que

$$f(n) = \prod_{r=1}^{e} f(p_r^{e_r}).$$

Si $N = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_r^{e_r}$ es la descomposición factorial de N, el número de divisores de dicho número vendrá determinado por

$$\tau_{(n)} = (e_1 - 1) \cdot \dots \cdot (e_r - 1) = \prod_{r=1}^{e} (e_r + 1)$$

Por ejemplo, si $728 = 2^1 \cdot 3^2 \cdot 41^1$, el número de divisores vendrá determinado por

$$\tau_{(728)} = \prod_{r=1}^{1} (r+1)(2r+2)(r+1) = 12$$

que son 1,2,3,6,9,18,41,82,123,246,369,738.

1.3 Función Suma de Divisores $\sigma_n(\rho)$.

La función $\sigma_n(p)$ es la suma de todos los números naturales divisores de n. Si p es primo, entonces $\sigma(p^e) = \frac{p^{(e+1)}-1}{p-1}$. Esto es así porque los únicos divisores de p^e son las potencias de p^s con $0 \le s \le e$. En consecuencia

$$\sigma_n(p^e) = 1 + p + p^2 + \dots + p^e = \frac{p^{(e+1)} - 1}{p-1}$$

Para todo número real o complejo α y todo entero $n \geq 1$ definimos $\sigma_n(p) = \sum_{d|p} d^n$ como la suma de las potencias $\alpha - \acute{e}simas$ de los divisores de n. Las funciones así definidas se llaman funciones divisor.

Para el caso particular de $\sigma_n(p^e)$ si observamos que los divisores de una potencia de un primo p^e son $1, p, p^2, \dots, p^e$ luego

$$\sigma_n(p^e) = 1 + p + p^2 + \dots + p^e = \frac{p^{n(e+1)} - 1}{p^n - 1}$$

Que la función $\sigma_{\alpha}(n)$ es multiplicativa puede ser demostrado vía ejemplo. Si p y q son números primos entre sí, entonces $\sigma_n(pq) = \sigma_n(p) \cdot \sigma_n(q)$. Si tenemos en cuenta que los únicos divisores de pq son 1, p, q, pq, desarrollando

$$\sigma_{p}(pq) = 1 + p + p + pq = (1+p) + q(1+p) = (1+p)(1+q)$$

de donde

$$\sigma_n(1+p)(1+q) = \sigma_n(p) \cdot \sigma_n(q)$$

Si $\sigma_1(3\cdot7) = \sigma_1(3)\cdot\sigma_1(7)$ entonces, $\sigma_1(3\cdot7) = 1+3+7+21=32=4\cdot8=\sigma_1(3)\sigma_1(7)$, con lo que queda demostrado que $\sigma_{\alpha}(n)$ es multiplicativa.

Por ejemplo, para factorizar $1000 = 2^3 \cdot 5^3$, aplicando la función divisor, se trata de resolver $\sigma_2(2^3 \cdot 5^3) = \sigma_1(2^3) \cdot \sigma_1(5^3)$. La solución la encontramos en

$$\sigma_2(2^3 \cdot 5^3) = \frac{2^{2(3+1)} - 1}{2^2 - 1} \cdot \frac{5^{2(3+1)} - 1}{5^2 - 1} = 85 \cdot 16276 = 1.383.460$$

Si recordamos que el número de divisores es $\tau(n) = (e+1)$, que para nuestro supuesto serían $\tau(2^3 \cdot 5^3) = (3+1)(3+1) = 16$, sumando los cuadrados de todos ellos obtenemos

$$\sigma_2(1000) = 1^2 + 2^2 + 4^2 + 5^2 + 8^2 + 10^2 + 20^2 + 25^2 + 40^2 + 50^2 + 100^2 + 125^2 + 200^2 + 250^2 + 500^2 + 1000^2 = 1.383.460$$

1.4 Función Indicatriz de Euler $\varphi(n)$.

La función $\varphi(n)$ se define como el número de enteros positivos primos con n y menores o iguales a n, esto es, la sucesión $\{1,2,3,\ldots,n-1\}$ que son coprimos con n. Si la descomposición factorial de n es $n=p^a\cdot p^b\cdot\ldots\cdot p^r$, la función $\varphi(n)=n(1-\frac{1}{p_1})\cdot\ldots\cdot(1-\frac{1}{p_r})$ o bien

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1} - 1) \cdot ... \cdot (p_r^{e_r} - p_r^{e_r} - 1)$$

resulta

$$\varphi(n^e) = p^e - p^e - 1$$
 ó $\varphi(p) = p - 1$

En general, la función Indicatriz de Euler puede ser expresada como

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

observar que $\frac{\varphi(n)}{n}$ es multiplicativa y que $\frac{\varphi(p^e)}{p^e} = \frac{p^e - p^{e-1}}{p^e} = 1 - \frac{1}{p}$.

Por ejemplo, para $720 = 2^4 \cdot 3^2 \cdot 5$ obtenemos

$$\varphi(720) = 720(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5}) = 720(\frac{1}{2})(\frac{2}{3})(\frac{4}{5}) = 720(\frac{8}{30}) = \frac{5760}{30} = 192.$$

Este resultado podemos expresarlo como

$$\varphi(720) = \varphi(16) \cdot \varphi(9) \cdot \varphi(5) = 16(1/2) \cdot 9(2/3) \cdot 5(4/5) = 8 \cdot 6 \cdot 4 = 192$$

demostrándose que la función $\varphi(n)$ es multiplicativa.

Una de las propiedades de la función $\varphi(n)$ es que si n > 1 entonces, la suma de los enteros positivos menores o iguales a n y relativamente primos con n es $\tau(p) = \frac{1}{2}n\varphi(n)$.

1.5 Función Möbius $\mu(n)$.

La función de Augustus Ferdinand Möbius (1790-1868) destaca que $\mu(n)=0$ si, y sólo si, n es divisible por un cuadrado distinto de 1. Las propiedades son que si n=1 entonces $\mu(1)=1$, si $n=p_1\cdot p_2\cdot ...\cdot p_r$ con p_i primos distintos, entonces $\mu(n)=(-1)^r$ y, si $a^2\mid n$, para algún n>1 entonces, $\mu(n)=0$.

Esta función, que para algunos autores es la más importante dentro de la teoría analítica de los números, puede ser definida como

$$\mu(n) = \begin{cases} (-1)^{\omega(n)} = (-1)^{\Omega(n)} & \text{si } \omega(n) = \Omega(n) \\ 0 & \text{si } \omega(n) < \Omega(n) \end{cases}$$

donde $\omega(n)$ obtiene el número de primos distintos que dividen al número n, y $\Omega(n)$ obtiene el número de factores primos de n, incluyendo sus multiplicidades. Claramente se denota de que $\omega(n) \leq \Omega(n)$.

Por ejemplo, para $\mu(45) = \frac{45}{3^2} = 0$. Si ahora consideramos que $45 = 5 \cdot 9$, entonces

$$\mu(45) = \mu(5) \cdot \mu(9) = 0$$

ya que para $\mu(5) = (-1)^1 = -1$ y para $\mu(9) = 0$ luego $\mu(45) = \mu(5) \cdot \mu(9) = (-1) \cdot 0 = 0$.

Queda demostrado que la función $\mu(n)$ no sólo es multiplicativa, si no que μ^2 es la función característica de los libres de cuadrados, esto es, los no divisibles por ningún cuadrado mayor que 1.

Vamos a probar la relación de esta función con $\varphi(n)$.

Sea $\varphi(n) = \sum_{k=1}^{n} \left[\frac{1}{(n,k)} \right]$ donde k recorre todos los enteros $\leq n$. Si $n \geq 1$, tenemos

 $\sum_{d|n} \mu(d) = \left[\frac{1}{n}\right] = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{si } n > 1 \end{cases}$ fórmula de la función de Möbius claramente cierta n = 1. En la

suma $\sum_{d|n} \mu(d)$ los únicos términos no nulos proceden de d=1 y de los divisores de n que son producto de primos distintos.

Para un divisor d de n fijo podemos sumar respecto de todos los k tales que $1 \le k \le n$ si, y sólo sí, $1 \le q \le n \mid d$, por lo tanto

$$\varphi(n) = \sum_{d|n} \sum_{a=1}^{n|d} \mu(d) = \sum_{d|n} \mu(d) \sum_{a=1}^{n|d} 1 = \sum_{d|n} \mu(d) \frac{n}{d}$$

1.6 Función de Mangoldt $\Lambda(n)$.

La notación $\Lambda(n)$ se conoce como función de Mangoldt en honor a Hans C.F. von Mangoldt (1854-1925), matemático alemán que la adaptó de otra descubierta por Nikolay Bugáiev (1837-1903), matemático ruso que la descubrió. La función Mangoldt se expresa como $\Lambda(n) = \ln(p)$ si $n = p^k$, con p primo y $k \ge 1$, o $\Lambda(n) = 0$, en caso contrario. La función Mangoldt cumple la siguiente identidad donde $\log n = \sum_{n=1}^{\infty} \Lambda(d)$ que es la suma los d que dividen a n.

Por ejemplo, para $\log 18 = \sum_{d \mid 18} \Lambda(d)$. Como los divisores de 18 son 1, 2, 3, 6, 9 y 18, tenemos que $\log 18 = \sum_{d \mid 18} \Lambda(d) = \Lambda(1) + \Lambda(2) + \Lambda(3) + \Lambda(6) + \Lambda(9) + \Lambda(18)$ que es equivalente a $\log n = \sum_{d \mid 18} \Lambda(d) = 0, \log 2, \log 3, 0, \log 3, 0 = \log(2 \cdot 3 \cdot 3) = \log 18$

1.7 Funciones de Chebyshev $\vartheta(x) y \Psi(x)$.

Las notaciones $\vartheta(x)$ y $\Psi(x)$ se conocen como la primera y segunda función de Chebyshev en honor a Pafnuy L. Chebyshev (1821-1894), matemático ruso que la descubrió. Se deno-

tan como $\vartheta(x) = \sum_{p \le x} \log p = \log \prod_{p \le x} p$ y $\Psi(n) = \sum_{n \le x} k \log(p)$ y su relación con la función de Mangoldt $\Lambda(n)$ es que $\Psi(n) = \sum_{n \le x} \Lambda(n)$.

La equivalencia entre ambas funciones viene determinada por

$$\Psi(x) = \sum_{m \le \log 2x} \vartheta(x^{1/m})$$

Las funciones $\vartheta(x)$ y $\Psi(x)$ cuentan el número de primos $p \le x$ y las potencias principales $p^k \le x$, respectivamente, con peso específico de p. Claramente se observa de que $\vartheta(x) \le \Psi(x)$.

Estas funciones se usan frecuentemente en pruebas relacionadas con la distribución de los números primos.

Por ejemplo, para

$$\vartheta(10) = \log 2 + \log 3 + \log 5 + \log 7$$

 $\Psi(10) = 3\log 2 + 2\log 3 + \log 5 + \log 7$

1.8 Función de Liouville $\lambda(n)$.

Se denota como $\lambda(n) = (-1)^{\Omega(n)}$ la función Liouville en honor a Joseph Liouville (1809-1882), matemático francés que la descubrió. La función $\lambda(n) = (-1)^{\Omega(n)}$ es completamente multiplicativa. Para cada $n \ge 1$ tenemos

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{si n es un cuadrado} \\ 0 & \text{si n no es cuadrado'} \end{cases}$$

además $\lambda^{-1}(n) = |\mu(n)|$ para todo n.

Para
$$\sum_{d \in \mathbb{N}} \lambda(d) = (1,2,3,6,9,18) = \{1,-1,-1,1,1,-1\} = -1$$

1.9 Funciones Factor Primo $\omega(n)$ y $\Omega(n)$.

Sea $n=\prod_{i=1}^k p_i^{\alpha_i}$ con números primos distintos p_1,\dots,p_r , entonces se define $\Omega(n)=\sum_{i=1}^r \alpha_i$ como la función cuenta factores primos, distintos o iguales, en la que se descompone un número como producto. Dado que $\Omega(1)=0$, esta función no es multiplicativa pero, como los factores primos que aparecen en un producto de dos números, m y n, son los que aparecen en m más los que aparecen en n, se tiene $\Omega(m\cdot n)=\Omega(m)+\Omega(n)$ luego, $a^{\Omega(m\cdot n)}=a^{\Omega(m)+\Omega(n)}$, que si es completamente multiplicativa.

Sea $n = \prod_{i=1}^{\omega(n)} p_i^{\alpha_i}$ y $\Omega(n) = \sum_{i=1}^{\omega(n)} \alpha_i$ como la función que es igual a la cantidad de factores primos diferentes que dividen a n. La función $a^{\omega(n)}$ es multiplicativa. Si m y n no tienen facto-

res comunes, los factores primos que los dividen son distintos y entonces $\omega(m \cdot n) = \omega(m) + \omega(n)$ y por tanto $a^{\omega(m \cdot n)} = a^{\omega(m) + \omega(n)} = a^{\omega(m)} a^{\omega(n)}$.

Por ejemplo, $18 = 2 \cdot 3^2$ tiene como solución $\Omega(18) = 3$ y $\omega(18) = 2$ ya que en el primero 3 factores, uno repetido, y en el segundo son dos factores primos, sin repetición.

15.2 Funciones Eulerianas y afines

2.1 Función Gamma (*)

Se trata de la función Euleriana de primera especie o función gamma que se denota por la notación de $\Gamma(z)$, notación ideada por Adrien - Marie Legendre (1752-1833). La función gamma tiene como expresión $\int_0^\infty x^{z-1}e^{-x}\ dx$, si x>0 y z>0. Es una función que extiende el concepto de factorial a los números complejos. Si la parte real del número z es positivo, entonces la integral $\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}\ dx$ converge absolutamente, si n es un entero positivo, entonces $\Gamma(n)=(n-1)!$, lo que demuestra la relación de esta función con el factorial. De hecho, la función gamma generaliza el factorial para cualquier valor complejo de n.

(*) La función gamma fue introducida por primera vez por el matemático suizo Leonhard Euler (1707-1783), con el objetivo de generalizar la función factorial a valores no enteros. Más tarde, fue estudiada por matemáticos tales como Adrien-Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph Liouville (1809-1882), Karl Weierstrass (1815-1897), Charles Hermite (1822-1901, entre otros.

Algunas de las propiedades de la función gamma son:

$$\Gamma(0) = \infty$$

$$\Gamma(1) = 1$$

$$\Gamma(n+1) = n! \text{ ó } \Gamma(n) = (n-1)!$$

$$\Gamma(n+1) = n\Gamma(n), \text{ es la fórmula de recurrencia.}$$

$$\Gamma(p) = (p-1) \Gamma(p-1), \text{ para } p > 1$$

$$\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx \text{ ó también } \Gamma(p) = 2 \int_0^\infty x^{2p-1} e^{-x^2} dx$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi} = 2 \int_0^\infty e^{-x^2} dx$$

Por ejemplo, para n = 0,1,2,3,4,5,6,7,8,9,10,... obtenemos:

$$\Gamma(0) = \infty$$
, $\Gamma(1) = 1$; $\Gamma(2) = 1 \rightarrow (2-1)! = 1$;
 $\Gamma(3) = 2 \rightarrow (3-1)! = 2$; $\Gamma(4) = 6 \rightarrow (4-1)! = 6$
 $\Gamma(5) = 24 \rightarrow (5-1)! = 24$; $\Gamma(6) = 120 \rightarrow (6-1)! = 120$
 $\Gamma(7) = 720 \rightarrow (7-1)! = 720$; $\Gamma(8) = 5040 \rightarrow (8-1)! = 5040$
 $\Gamma(9) = 40320 \rightarrow (9-1)! = 40320$; $\Gamma(10) = 362880 \rightarrow (10-1)! = 362880$

Por ejemplo, para p = 2,3,5,7,... obtenemos:

$$\Gamma(2) = \int_0^\infty x^{2-1} e^{-x} dx = 1; \quad \Gamma(2) = 2 \int_0^\infty x^{2(2-1)} e^{-x^2} dx = 1$$

$$\Gamma(3) = \int_0^\infty x^{3-1} e^{-x} dx = 2; \quad \Gamma(3) = 2 \int_0^\infty x^{2(3-1)} e^{-x^2} dx = 2$$

$$\Gamma(5) = \int_0^\infty x^{5-1} e^{-x} dx = 24; \quad \Gamma(5) = 2 \int_0^\infty x^{2(5-1)} e^{-x^2} dx = 24$$

$$\Gamma(7) = \int_0^\infty x^{7-1} e^{-x} dx = 720; \quad \Gamma(7) = 2 \int_0^\infty x^{2(7-1)} e^{-x^2} dx = 720$$

Por ejemplo, para p = 1/2, 3/2, 5/3,... obtenemos:

$$\Gamma(1/2) = \sqrt{\pi} \to \Gamma(1/2) = 2\int_0^\infty e^{-x^2} dx = \sqrt{\pi}$$

$$\Gamma(3/2) = \frac{\sqrt{\pi}}{2} \to \Gamma(3/2) = 1\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\Gamma(5/2) = \frac{3\sqrt{\pi}}{4} \to \Gamma(5/2) = (3/2)\int_0^\infty e^{-x^2} dx = \frac{3\sqrt{\pi}}{4} = \frac{3\cdot 1}{2\cdot 2} \cdot \frac{1}{2} = \frac{3}{4} \cdot \sqrt{\pi}$$

2.2 Probar que $\Gamma(1/2)$ es un número trascendente.

Sea p un número real tal que $0 . La función gamma <math>\Gamma(p)$ verifica la igualdad $\Gamma(p)$ $\Gamma(1-p) = \frac{\pi}{sen \ p\pi}$, llamada fórmula de los complementos. Como $\left[\Gamma\left(\frac{1}{2}\right)\right]^2 = \pi$ de donde $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = 2\int_0^\infty e^{-x^2} dx$, esto prueba en particular que $\Gamma\left(\frac{1}{2}\right)$ es un número trascendente.

2.3 Calcular la función $\Gamma(13/2)$.

Tenemos que $\Gamma(\frac{13}{2}) = \frac{11\cdot9\cdot7\cdot5\cdot3\cdot1}{2\cdot2\cdot2\cdot2\cdot2\cdot2} \cdot \Gamma(\frac{1}{2}) = \frac{10395}{64} \cdot \sqrt{\pi} = \frac{10395\sqrt{\pi}}{64}$. Este mismo resultado podíamos haberlo obtenido aplicando alguna de las integrales, $\int_0^\infty x^{\frac{13}{2}-1}e^{-x} \ dx = \frac{10395\sqrt{\pi}}{64}$ o $2\int_0^\infty x^{\frac{213}{2}-1}e^{-x^2} \ dx = \frac{10395\sqrt{\pi}}{64}$.

2.4 Fórmula de Duplicación para $n \in \mathbb{N}$.

La fórmula de duplicación es un caso especial del teorema de multiplicación, así

$$\Gamma\left(n + \frac{1}{2}\right) = \left(n - \frac{1}{2}\right)\left(n - \frac{3}{2}\right)...\left(\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\right)\sqrt{\pi}$$

$$= \frac{1}{2^{n}}(2n - 1)(2n - 3)...5 \cdot 3 \cdot 1\sqrt{\pi}$$

$$= \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

Por ejemplo, para $\Gamma(4+1/2)$

$$\begin{split} \Gamma\!\left(4 + \frac{1}{2}\right) &= \Gamma\!\left(\frac{9}{2}\right) \\ &= \frac{7}{2}\Gamma\!\left(\frac{7}{2}\right) = \frac{7}{2} \cdot \frac{5}{2}\Gamma\!\left(\frac{5}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2}\Gamma\!\left(\frac{3}{2}\right) \\ &= \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma\!\left(\frac{1}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}\sqrt{\pi} = \frac{105}{16}\sqrt{\pi} \end{split}$$

$$\Gamma\left(4+\frac{1}{2}\right) = \Gamma\left(\frac{9}{2}\right) = \frac{(2\cdot4)!}{2^{2\cdot4}4!}\sqrt{\pi} = \frac{105\sqrt{\pi}}{16}$$

Por ejemplo, para $\Gamma(3+5/2)$

$$\Gamma\left(3 + \frac{5}{2}\right) = \Gamma\left(\frac{11}{2}\right) = \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi} = \frac{945\sqrt{\pi}}{32}$$

$$\Gamma\left(3 + \frac{5}{2}\right) = \Gamma\left(\frac{11}{2}\right) = \frac{(2 \cdot 5)!}{2^{2 \cdot 5} \cdot 5!} = \frac{945\sqrt{\pi}}{32}$$

2.5 Calcular la función B(p,q), para p=3, q=7.

Se trata de la función Euleriana de segunda especie o función beta que se conoce con la notación de B(p,q). La función beta tiene como expresión $\int_0^1 x^{p-1} (1-x)^{q-1} \ dx$, es decir, $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} \ dx$ para p,q>0.

Algunas propiedades de la función beta son:

$$B(\frac{1}{2}, \frac{1}{2}) = \pi$$

$$B(p,q) = B(q,p), \text{ concepto de simetría.}$$

$$B(p,q) = \frac{q-1}{p}B(p+1,q-1), \text{ con } p > 0, q > 1$$

$$\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$$

$$B(p,q) = \int_{0}^{1} x^{p-1}(1-x)^{q-1}dx = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$B(p,q) = \int_{0}^{\infty} \frac{x^{p-1}}{(1+x)^{p+q}}dx = \frac{(p-1)!(q-1)!}{(p+q-1)!}$$

$$B(p,q) = \int_{-\infty}^{+\infty} \frac{e^{xp}}{(1+e^{x})^{p+q}} \cdot dx$$

Aplicando los valores planteados para B(3,7), demostramos las propiedades de esta función:

$$B(3,7) = \frac{7-1}{3}B(3+1,7-1) = 2 \cdot \frac{1}{504} = \frac{1}{252}$$

$$\Gamma(3)\Gamma(7) = \Gamma(3+7)B(3,7) = 2 \cdot 720 = 362880 \cdot \frac{1}{252} = 1440$$

$$B(3,7) = \int_0^1 x^{3-1} (1-x)^{7-1} dx = \frac{\Gamma(3)\Gamma(7)}{\Gamma(3+7)} = \frac{2 \cdot 720}{362880} = \frac{1}{252}$$

$$B(3,7) = \int_0^\infty \frac{x^{3-1}}{(1+x)^{3+7}} \cdot dx = \int_0^\infty \frac{x^{7-1}}{(1+x)^{3+7}} \cdot dx = \frac{(3-1)!(7-1)!}{(3+7-1)!} = \frac{1}{252}$$

$$B(3,7) = \int_{-\infty}^{+\infty} \frac{e^{x3}}{(1+e^x)^{3+7}} \cdot dx = \int_{-\infty}^{+\infty} \frac{e^{x7}}{(1+e^x)^{3+7}} \cdot dx = \frac{1}{252}$$

2.6 Calcular la función B(p,q), para $p = \frac{5}{2}$, $q = \frac{7}{2}$.

Tenemos que
$$B(\frac{5}{2},\frac{7}{2}) = \frac{\Gamma(\frac{5}{2})\Gamma(\frac{7}{2})}{\Gamma(\frac{5}{2}+\frac{7}{2})} = \frac{(\frac{31}{22}\sqrt{\pi})(\frac{531}{222}\sqrt{\pi})}{\Gamma(6)} = \frac{\frac{3\sqrt{\pi}}{4},\frac{15\sqrt{\pi}}{8}}{(5)!} = \frac{\frac{3}{4},\frac{15}{8}\cdot\pi}{120} = \frac{3\pi}{256}.$$

Igual resultado podíamos haber obtenido de aplicar la función integral

$$B(\frac{5}{2}, \frac{7}{2}) = \int_0^1 x^{5/2 - 1} (x - 1)^{7/2 - 1} dx = \int_{-\infty}^{+\infty} \frac{e^{x \cdot 5/2}}{(1 + e^x)^{5/2 + 7/2}} dx = \frac{3\pi}{256}$$

2.7 Calcular la función $B(\frac{3}{2}, \frac{9}{2})$.

Primero calculamos la función gamma y después la función beta:

$$\begin{split} &\Gamma(\frac{3}{2}) = \frac{1}{2} \cdot \Gamma(\frac{1}{2}) = \frac{1}{2} \cdot \sqrt{\pi} = \frac{\sqrt{\pi}}{2} \\ &\Gamma(\frac{9}{2}) = \frac{7 \cdot 5 \cdot 3 \cdot 1}{2 \cdot 2 \cdot 2 \cdot 2} \cdot \Gamma(\frac{1}{2}) = \frac{105}{2^4} \cdot \sqrt{\pi} = \frac{105 \sqrt{\pi}}{16} \\ &B(\frac{3}{2}, \frac{9}{2}) = \frac{\Gamma(\frac{3}{2}) \Gamma(\frac{9}{2})}{\Gamma(\frac{3}{2} + \frac{9}{2})} = \frac{(\frac{1}{2} \cdot \sqrt{\pi})(\frac{105}{16} \sqrt{\pi})}{\Gamma(12)} = \frac{\sqrt{\pi}}{\frac{105}{16}} = \frac{\frac{105}{39916800}}{39916800} = \frac{7 \cdot \pi}{256}. \end{split}$$

Por la función integral

$$B(\frac{3}{2}, \frac{9}{2}) = \int_0^1 x^{3/2 - 1} (x - 1)^{9/2 - 1} dx = \int_0^\infty \frac{x^{(3/2 - 1)}}{(1 + x)^{3/2 + 9/2}} dx = \frac{7\pi}{256}$$

2.8 Calcular la constante (γ) .

Conocida como constante de Euler - Mascheroni, (**) se ignora su naturaleza aritmética, es decir, si es racional o irracional, algebraica o trascendente, sí es claro que tiene cierta importancia en teoría de números.

La sucesión tiene como valor, $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n\right) = 0,577216$. En notación sumatoria podemos expresarla como $\gamma = \sum_{k=1}^m \frac{1}{k} - \ln m$.

(**) Lorenzo Mascheroni (1750-1800) fue un matemático italiano que logró una aproximación geométrica del número π , denominado método de Mascheroni. En el año 1790 publicó Adnotaciones and Calculum Integrale Euleri, un cálculo aproximado de la constante (γ), que tiene un valor aproximado de 0,5772156649015328606065120900824024310422....

2.9 Calcular la función $\psi(z)$, para z=1,2,3,4,...

La función digamma $\psi(n)$ se define como la derivada del logaritmo de $\Gamma(n)$ y tiene como expresión $\psi(z) = \frac{d \ln \Gamma(z)}{dz} = \frac{\Gamma'(z)}{\Gamma(z)}$ que podemos escribir como $\sum_{k=1}^{\infty} \frac{z-1}{k(k+z-1)} - \gamma$ donde γ es las constante de Euler y k un entero no negativo.

Si usamos la expresión $\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} (1 + \frac{z}{n})^{-1} e^{z/n}$ donde γ es la constante de Euler - Masche-

roni, podemos tomar el logaritmo $\ln(\Gamma(z)) = -\gamma z - \ln z - \sum_{n=1}^{\infty} \ln(1+\frac{z}{n}) - z/n$ y derivando respecto de z, obtenemos

$$\psi(z) = -\gamma - \frac{1}{z} + \sum_{n=1}^{\infty} \ln(\frac{1}{n} - \frac{1}{n+z}) = -\gamma + \sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{z+k-1}) = \sum_{k=1}^{\infty} \frac{z-1}{k(k+z-1)} - \gamma$$

Dando valores a z, obtenemos

$$\sum_{k=1}^{\infty} \frac{z-1}{k(k+z-1)} = 0, 1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}$$

De haberse utilizado la función PolyGamma del programa Mathematica, el resultado hubiera sido:

$$Table[PolyGamma[n], \{n, 1, 10\}] = -\gamma, 1 - \gamma, \frac{3}{2} - \gamma, \frac{11}{6} - \gamma, \frac{25}{12} - \gamma, \frac{137}{60} - \gamma, \frac{49}{20} - \gamma, \frac{363}{140} - \gamma, \frac{761}{280} - \gamma, \frac{7129}{2520} - \gamma, \frac{11}{20} - \gamma$$

donde γ denota la constante de Euler - Mascheroni.

2.10 Calcular la función $\psi_n(z)$ para n=1 y z=1,2,3,4,5,6,7.

En matemáticas, la función poligamma de orden n se define como

$$\psi_n(z) = \left(\frac{d}{dx}\right)^n \psi(z) = \left(\frac{d}{dx}\right)^{n+1} \log \Gamma(z)$$

donde

$$\psi(z) = \psi_0(z) = \frac{\Gamma'(z)}{\Gamma(z)}$$

es la función digamma.

Para $\psi_1(z)$, con z = 1, 2, 3, 4, 5, 6, 7 obtenemos:

$$\left(\frac{\pi^2}{6}\right), \left(\frac{\pi^2}{6} - 1\right), \left(\frac{\pi^2}{6} - \frac{5}{4}\right), \left(\frac{\pi^2}{6} - \frac{49}{36}\right), \left(\frac{\pi^2}{6} - \frac{205}{144}\right), \left(\frac{\pi^2}{6} - \frac{5269}{3600}\right), \left(\frac{\pi^2}{6} - \frac{5369}{3600}\right)$$

Otra forma de calcular la función poligamma es

$$\psi_n(z) = \sum_{k=1}^{\infty} \frac{(-1)^{n+1} n!}{(k+z-1)^{n+1}} = \sum_{k=1}^{\infty} \frac{(-1)^{1+1} 1!}{(k+7-1)^{1+1}} = \frac{\pi^2}{6} - \frac{5369}{3600}$$

cuando $\psi_1(7)$.

2.11 Calcular la función $(z)_n = (5,7)$.

Se trata del símbolo factorial creciente $(z)_n$ de Pochhammer(***), que tiene como desarrollo $(z)_n = n(n+1) \cdot ... \cdot (n+z-1) = \frac{(z+n-1)!}{(n-1)!}$.

Aplicado a nuestro caso,
$$(5)_7 = 7(7+1) \cdot ... \cdot (7+5-1) = \frac{(5+7-1)!}{(7-1)!} = \frac{11!}{6!} = 55440.$$

La función $(z)_n$ tiene la propiedad de $(z)_n=\frac{(x+n-1)!}{(n-1)!}=\frac{\Gamma(n+z)}{\Gamma(n)}$, que podemos comprobar, $(z)_n=\frac{\Gamma(7+5)}{\Gamma(7)}=\frac{\Gamma(12)}{\Gamma(7)}=\frac{11!}{6!}=55440$.

Otra de las propiedades de la función $(z)_n$ es que $(z)_n = \frac{(n-1)!}{B(z,n)} = \frac{(5-1)!}{B(7,5)} = 55440$ donde

B(z,n) es la función beta de Euler.

(***) Leo August Pochhammer (1841-1920), fue un matemático prusiano, conocido por su trabajo sobre funciones especiales. Introdujo el símbolo Pochhammer, usado hoy en día para expresar funciones hipergeométricas.

2.12 Demostrar los primeros valores de $(z)_n$ para n entero y positivo.

Si n es un entero positivo y $(z)_n$ es el símbolo de Pochhammer, para los distintos valores de n se generan los siguientes polinomios:

$$(z)_0 = 1$$

$$(z)_1 = z$$

$$(z)_2 = z(z+1) = z^2 + z$$

$$(z)_3 = z(z+1) (z+2) = z^3 + 3z^2 + 2z$$

$$(z)_4 = z (z+1) (z+2) (z+3) = z^4 + 6z^3 + 11z^2 + 6z$$

$$(z)_5 = z(z+1) (z+2) (z+3) (z+4) = z^5 + 10z^4 + 35z^3 + 50z^2 + 24z$$

Si resolvemos la ecuación $z^5 + 10z^4 + 35z^3 + 50z^2 + 24z = 0$, obtenemos como soluciones:

$$z_1 = 0$$
, $z_2 = -1$, $z_3 = -2$, $z_4 = -3$, $z_5 = -4$

Las soluciones de estos polinomios recorren todo el sistema completo de restos respecto al grado de dicho polinomio. Dejamos en manos del lector la comprobación de esta aseveración.

15.3 Funciones Especiales

3.1 Series de Dirichlet.

En matemáticas, una serie de Dirichlet es toda serie del tipo $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$, donde s y a_n , n=1,2,3,... son números complejos. Las series de Dirichlet juegan un papel muy importante en la teoría analítica de los números. Se llama Dirichlet en honor a Peter Gustav Lejeune Di-

Son series famosas de Dirichlet

richlet (1805-1859), matemático alemán.

$$\varsigma(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \text{ que es la función zeta de Riemann, donde para } s = 2,4,6,8,10,\dots \text{ obtenemos } \varsigma(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{\pi^2}{6}, \frac{\pi^4}{90}, \frac{\pi^6}{9450}, \frac{\pi^8}{9450}, \frac{\pi^{10}}{93555},\dots$$

 $\frac{1}{\varsigma(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}, \text{ donde } \mu(n) \text{ es la función de Möbius. Para } s = 2,4,6,8,10,\dots \text{ obtenemos}$ $\frac{1}{\varsigma(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{6}{\pi^2}, \frac{90}{\pi^4}, \frac{945}{\pi^6}, \frac{9450}{\pi^8}, \frac{93555}{\pi^{10}}, \dots \text{ que se conoce como inversión de Möbius.}$

$$\frac{\mathcal{\zeta}(s-1)}{\mathcal{\zeta}(s)} = \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s}, \text{ donde } \varphi(n) \text{ es la función Indicatriz de Euler. Para } s = 3,4,5,\dots \text{ obtenemos } \frac{\mathcal{\zeta}(s-1)}{\mathcal{\zeta}(s)} = \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^s} = \frac{\pi^2}{6\mathcal{\zeta}(3)}, \frac{90\mathcal{\zeta}(3)}{\pi^4}, \frac{\pi^4}{90\mathcal{\zeta}(5)}, \frac{945\mathcal{\zeta}(5)}{\pi^6}, \frac{\pi^6}{945\mathcal{\zeta}(7)}, \frac{9450\mathcal{\zeta}(7)}{\pi^8},\dots$$

Quizás la más famosa de las series sea $L(\chi,s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}$, donde χ es un carácter de Dirichlet y s una variable compleja cuyo componente real es >1. Esta función tiene como identidad $L(\chi,s)\prod_p \left(1-\frac{\chi(p)}{p^s}\right)^{-1}$ donde se demuestra que existen un número infinito de números primos en cualquier progresión aritmética de la forma ax+b con (a,b)=1.

Un carácter de Dirichlet es una función aritmética completamente multiplicativa $\chi(n)$ tal que existe un entero positivo k con $\chi(n+k)=\chi(n)$ para todo n y $\chi(n)=0$, siempre que mcd(n,k)>1. Para el caso particular de la progresión 4k+1, donde

$$\chi(n) = \begin{cases} (-1)^{(n-1)/2} & para \ n \ impar \\ 0 & para \ n \end{cases} par$$

es decir

$$\chi(n) = 1 \text{ si } 4k + 1 \text{ y } \chi(n) = -1 \text{ si } 4k + 3$$

Es fácil comprobar que $\chi(m \cdot n) = \chi(m) \cdot \chi(n)$, es multiplicativa. La función $L(\chi, s)$ se define como

$$L(\chi,s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = 1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \dots$$

La Identidad de Dirichlet toma la forma de

$$\prod_{p_i,p_j} \left(1 - \frac{1}{p_i^s} \right) \cdot \dots \cdot \left(1 - \frac{1}{p_j^s} \right) = 1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \dots$$

donde p_i son números de la forma 4k+1 y p_j son números de la forma 4k+3. En definitiva, obtenemos

$$L(k,j,s) = \sum_{n=1}^{9} \frac{\chi(n)}{n^{s}} = \infty, \frac{\pi^{2}}{6}, \zeta(3), \frac{\pi^{4}}{90}, \zeta(5), \frac{\pi^{6}}{945}, \zeta(7), \frac{\pi^{8}}{9450}, \zeta(9), \frac{\pi^{10}}{93555}, \dots$$

donde k es el módulo, j es el índice y s es un complejo arbitrario.

3.2 Función Zeta de Riemann

La función $\zeta(s)$ es conocida como función Zeta de Riemann y está íntimamente ligada al estudio de los números primos. Definida para números complejos s, su especificación es $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ que converge absolutamente si s>1, donde $s=\sigma+it$ tales que $\sigma>1$. Su concepción actual se debe al matemático alemán Georg Friedrich Bernhard Riemann (1826-1866) no obstante, desde Euclides (año 300 a.C.) se sabe que la sucesión de números primos es infinita. Arquímedes (287-212 a.C.) pudo probar que la serie $\sum_{n=1}^{\infty} \frac{1}{4^n} = \frac{1}{3}$ es convergente, es lo que ahora se llaman series geométricas. Por otra parte, Nicole Oresmes (1323-1382), el que fuera obispo de Lisieux, en sus obras De Proportionibus Proportionum y Algorismus Proportionum, prueba que la llamada serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ es divergente, ya que

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1}, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \dots$$

En el año 1672 se publica en Italia un libro sobre la cuadratura del círculo denominado II Problema della Quadratura del Circolo, de Pietro Mengoli (1625-1686), un clérigo matemático formado bajo la influencia de Bonaventura Cavalieri (1598-1647), donde ataca por primera vez el uso de las series infinitas mediante la suma de una serie armónica alternada

$$\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

donde

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log(2)$$

En 1730 Leonhard Euler (1707-1783), comienza sus trabajos sobre la función zeta de Riemann. Sabe por estudios anteriores que $\sum_{n>1} \frac{1}{n}$ no es convergente, sin embargo la suma de los recíprocos de los números cuadrados converge hacia un valor interesante, esto es $\sum_{n>1} \frac{1}{n^2} = \frac{\pi^2}{6}$, y lo prueba

$$\sum_{100} \frac{1}{n^2} = \frac{1}{1}, \frac{5}{4}, \frac{49}{36}, \frac{205}{144}, \frac{5269}{3600}, \frac{5369}{3600}, \frac{266681}{176400}, \dots, \frac{\pi^2}{6}$$

donde

$$\frac{5369}{3600} < \frac{266681}{176400} < \frac{\pi^2}{6} \Rightarrow 1,491389 < 1,511797 < 1,644934$$

los números convergen pero muy lentamente.

En 1749 las observaciones de Euler de que el producto

$$\prod_{p \in \mathbb{P}} \left\{ 1 - p^{-s} \right\}^{-1} = \sum_{n=1}^{\infty} n^{-s}, \quad s > 1$$

donde p recorre todos los números primos \mathbb{P} y n los números naturales, será el comienzo de las investigaciones de Riemann sobre esta función.

Por ejemplo, para $\zeta(s)$, s = 2, 4, 6, 8, 10 obtenemos

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \ \zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \ \zeta(6) = \frac{\pi^6}{945}, \ \zeta(8) = \frac{\pi^8}{9450}, \ \zeta(10) = \frac{\pi^{10}}{93555}$$

Existe una relación importante entre la función zeta y la función gamma. La función zeta la podemos expresar como $\zeta(s) = \frac{1}{\Gamma(s)} \int\limits_0^\infty \frac{x^{s-1}}{e^x - 1} dx$ o como $\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}$. Por otra parte,

la función gamma puede ser $\Gamma(s) = (s-1)!$ o $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$.

Por ejemplo, para s = 4,8,... obtenemos

Para
$$\Gamma(4) = (4-1)! = \int_0^\infty t^{4-1} e^{-t} dt = 6.$$

Para
$$\Gamma(4) = (8-1)! = \int_0^\infty t^{8-1} e^{-t} dt = 5040.$$

Para
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{6} \int_{0}^{\infty} \frac{z^{4-1}}{e^x - 1} dz = \frac{\pi^4}{90}$$

Para
$$\zeta(8) = \sum_{n=1}^{\infty} \frac{1}{n^8} = \frac{1}{8} \int_{0}^{\infty} \frac{z^{8-1}}{e^x - 1} dz = \frac{\pi^8}{9450}$$

En el caso de que s sea racional, operamos como si fueran enteros. Ejemplo, para s=3/7,11/7,... obtenemos

Para
$$\Gamma(3/7) = (3/7 - 1)! = \int_0^\infty t^{3/7 - 1} e^{-t} dt = 2,067512...$$

Para
$$\Gamma(11/7) = (11/7 - 1)! = \int_0^\infty t^{11/7 - 1} e^{-t} dt = 0.8906177...$$

Si
$$\Gamma(6) = (6-1)! = 120$$
 y $\zeta(6) = \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$ donde $120 \cdot \frac{\pi^6}{945} = \frac{8\pi^6}{63}$, también se cumple que

$$\Gamma(6)\zeta(6) = \int_0^\infty \frac{z^{6-1}e^{-1z}}{1 - e^{-z}} = \frac{8\pi^6}{63}$$

3.3 Función Zeta de Hurwitz

En matemáticas, la función zeta de Hurwitz es una de las muchas funciones zeta que existen. Fue descubierta por Adolf Hurwitz (1859-1919), un matemático alemán que la definió formalmente para un argumento complejo s y un argumento real a como

$$\zeta(s,a) = \sum_{k=0}^{\infty} \frac{1}{(k+a)^s}$$

Por ejemplo, para s y a = 1, obtenemos

$$\zeta(2s,1) = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2s}} = \frac{\pi^2}{6}, \frac{\pi^4}{90}, \frac{\pi^6}{945}, \frac{\pi^8}{9450}, \frac{\pi^{10}}{93555}, \frac{691\pi^{12}}{638512875}, \frac{2\pi^{14}}{18243225}, \frac{3617\pi^{16}}{325641566250}, \dots$$

Si
$$\Gamma(8) = (8-1)! = 5040$$
 y $\zeta(8,1) = \sum_{n=0}^{\infty} \frac{1}{(n+1)^8} = \frac{\pi^8}{9450}$ donde $5040 \cdot \frac{\pi^8}{9450} = \frac{8\pi^8}{15}$, también se cumple que

$$\Gamma(8)\zeta(8,1) = \int_0^\infty \frac{z^{8-1}e^{-1z}}{1 - e^{-z}} dz = \frac{8\pi^8}{15}$$

3.4 Función Zeta de Lerch

La función Lerch transcendente es una función especial que generaliza la función zeta de Hurwitz y el polilogaritmo, por lo que también es conocida como función zeta de Hurwitz - Lerch. Su descubridor fue el matemático checo Mathias Lerch (1860-1922) y se denota como

$$\Phi(z, s, a) = \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s} = \frac{1}{a^s} + \frac{z}{(a+1)^s} + \frac{z^2}{(a+2)^s} + \dots$$

Por ejemplo:

Para $\Phi(1,10,1) = \sum_{n=0}^{\infty} \frac{1}{n^s} = \frac{\pi^{10}}{93555}$ es la función zeta de Riemann.

Para
$$\Phi(1,4,1) = \sum_{n=0}^{\infty} \frac{1}{(n+1)^4} = \frac{\pi^4}{90}$$
 es la función zeta de Hurwitz.

Para
$$\Phi(-1, s, 1) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^s} = (1 - 2^{1-s})\zeta(s) = \frac{15\zeta(5)}{16}, s = 5, \text{ es la función } \eta(n) \text{ de Di-}$$

richlet. La función eta de Dirichlet se define como $\eta(n) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = (1-2^{1-s})\zeta(s)$.

Para
$$\Phi(-1,s,\frac{1}{2}) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n+1)^s} = 2^{-s} \zeta(s,\frac{1}{4}) - 2^{-s} \zeta(s,\frac{3}{4}) = \frac{61\pi^7}{1440}, \ s=7, \ \text{es la función beta}$$
 de Dirichlet.

Para
$$\Phi(1,6,3) = \frac{1}{\Gamma(6)} \int_0^\infty \frac{t^{6-1}e^{-3t}}{1-1e^{-t}} dt = \frac{1}{120} \left(-\frac{975}{8} + \frac{8\pi^6}{63} \right) = -\frac{65}{64} + \frac{\pi^6}{945}$$
 donde $\Gamma(n)$ es la

función gamma de Euler.

3.5 Serie de Farey

La serie de Farey de orden n, F_n , John Farey (1766-1826), se define como la serie ascendente de todas las fracciones irreducibles entre 0 y 1, cuyo denominador no excede de n, esto es, la fracción a / b pertenecerá a la serie de Farey de orden n si, y sólo si, $0 \le a \le b \le n$ y mcd(a,b)=1. Se llama mediana de dos fracciones a / b, $c / d \in \mathbb{Q}$, la fracción (a+c)(b+d). Las series de Farey cumplen las siguientes propiedades:

- 1. Dos términos consecutivos de F_n , a_i/b_i , a_{i+1}/b_{i+1} , cumple que $b_i+b_{i+1}>n$.
- 2. Si n > 1 entonces en F_n , las fracciones consecutivas no tienen el mismo denominador.
- 3. Dos términos consecutivos de F_n , a_i/b_i , a_{i+1}/b_{i+1} , cumple que $a_{i+1}b_i a_ib_{i+1} = 1$.
- 4. Tres términos consecutivos de F_n , a_i/b_i , a_{i+1}/b_{i+1} , a_{i+2}/b_{i+2} , cumple que $\frac{a_{i+1}}{b_{i+1}} = \frac{a_i + a_{i+2}}{b_i + b_{i+2}}.$
- 5. El número de fracciones irreducibles con denominador $1 < m \le n$ es $\phi(m)$, de modo que el número total de fracciones en la serie es de $N_{(n)} = 1 + \sum_{k=1}^n \phi(n)$ y la suma de ellas vale $\frac{1}{2}N_{(n)}$.

Por ejemplo, para F_n , n=1,2,3,4 y 5, obtenemos

Para F_1 : $\frac{0}{1}, \frac{1}{1}$ Términos extremos.

Para F_2 : $\frac{0}{1}, \frac{1}{2}, \frac{1}{1}$ Se intercala un término

Para F_3 : $\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}$ Se intercalan tres términos

Para F_4 : $\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}$ Se intercalan cinco términos

Para F_5 : $\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}$ Se intercalan nueve términos

Por ejemplo, calcular las fracciones de la serie F_n , n=7 y 9 y demostrar su relación con la función Indicatriz de Euler $\varphi(n)$.

Para n=7, al ser número primo, $\varphi(7)=7\left(\frac{6}{7}\right)=6$ números primos con 7, esto es, $\{1,2,3,4,5,6\}$, las fracciones de F_7 son

$$\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{3}, \frac{4}{7}, \frac{3}{5}, \frac{2}{7}, \frac{5}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{5}, \frac{6}{6}, \frac{1}{7}, \frac{1}{1}$$

Observar que en los numeradores se repiten todos los números de la función $\varphi(n)$.

Para n = 9, como $9 = 3^2$, $\varphi(9) = 9\left(\frac{2}{3}\right) = 6$ números primos con 9, que son $\{1, 2, 4, 5, 7, 8\}$.

Para F_9 tenemos $\frac{0}{1}, \frac{1}{9}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{2}{9}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{3}{8}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{7}{9}, \frac{4}{5}, \frac{5}{9}, \frac{6}{7}, \frac{7}{8}, \frac{8}{9}, \frac{1}{1}$.

Observar que en el numerador, aparte de los números generados por $\varphi(n)$, se repite el 6 como múltiplo de 3 y éste como múltiplo de 9, número propuesto.

3.6 Probar la relación en las funciones $\psi(n,s)$ y $\zeta(n,s)$, para s=3,5.

La relación que vincula a las funciones poligamma y zeta es que se igualan como

$$\psi_n(n,s) = \zeta(n+1,s) = \sum_{k=1}^{\infty} (k+s)^{-s+1}$$

luego, para resolver $\psi(n,s)$ tendremos

$$\psi_1(3) = \sum_{k+1}^{\infty} \frac{(-1)^{1+3}1!}{(k+3)-1)^{1+1}} = -\frac{5}{4} + \frac{\pi^2}{6} \text{ y } \psi_1(5) = \sum_{k+1}^{\infty} \frac{(-1)^{1+5}1!}{(k+5-1)^{1+1}} = -\frac{205}{144} + \frac{\pi^2}{6}$$

y para resolver $\zeta(n,s)$,

$$\zeta(1+1,3) = \sum_{k=0}^{\infty} (k+3)^{-3+1} = \frac{5}{4} + \frac{\pi^2}{6} \text{ y } \zeta(1+1,5) = \sum_{k=0}^{\infty} (k+5)^{-3+1} = -\frac{205}{144} + \frac{\pi^2}{6}$$

3.7 Probar la relación entre las funciones digamma y poligamma

Esta función $\psi(z)$, estudiada anteriormente, se denomina función psi o digamma y se define como $\psi(z)=d/dz\ln\Gamma(z)=d/dz\Gamma(z)/\Gamma(z)$, suponiendo que la parte real z sea positiva, esto es, que el argumento de z sea menor que $\pi/2$. Para su solución podemos utilizar

$$\ln(z) - \frac{2z\int_{0}^{\infty} \frac{t}{(t^2 + z^2)(e^{\pi t} - 1)} dt - 2z\int_{0}^{\infty} \frac{t}{(t^2 + z^2)(e^{\pi t} + 1)} dt + 1}{2z}$$

o también

$$\psi(z) = \sum_{k=1}^{\infty} \frac{z-1}{k(k+z-1)} - \gamma$$

Las funciones $\psi_n(n,z)$ denominadas *poligamma*, representan derivadas sucesivas y se definen como $\psi_n(n,z)=(d/dz)^n$ $\psi(n,z)=(d/dz)^{n+1}\ln\Gamma(z)$ siendo n el orden de derivada y suponiendo que z no sea cero o entero negativo. Si n es igual a cero, entonces, $\psi_0(z)=\psi(z)$. La solución se puede plantear mediante

$$\psi_n(n,z) = \sum_{k=1}^{\infty} \frac{(-1)^{n+1} \cdot n!}{(k+z-1)^{n+1}}.$$

Probar la relación entre las funciones Indicatriz de Euler y zeta

Recordemos que $\varphi(n) = n(\frac{p_1-1}{p_1} \cdot \frac{p_2-1}{p_2} \cdot \dots \cdot \frac{p_n-1}{p_n})$ es la función de Euler. Si hacemos que $\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}} = \prod_{p} (1 + \frac{\varphi(p)}{p^{s}} + \frac{\varphi(p^{2})}{p^{2s}} + ...) \text{ resulta que } \prod_{p} \frac{1 - \frac{1}{p^{s}}}{1 - \frac{1}{p^{s-1}}} = \frac{\zeta(s-1)}{\zeta(s)}.$

3.9 Probar la relación entre las funciones Möbius y zeta

Recordemos que $\mu(n)$ es la función Möbius que es 0 si no tiene algún factor cuadrado, $(-1)^r$ si n es producto de r primos distintos o, 1 en los demás casos. Si comparamos las sumas de ambas funciones, $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{\zeta(s)}$.

3.10 Probar la relación entre las funciones Mangoldt y zeta

Se conoce como función de Von Mangoldt a $\Lambda(n)$ que se define por $\Lambda(n) = \ln p$ si $n = p^k$ con p primo y $k \ge 1$ o por $\Lambda(n) = 0$ en caso contrario.

Como
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
, si ahora derivamos respecto a s la igualdad $\ln \zeta(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\ln(n) \cdot n^s}$, obtenemos $\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^s}$, con lo queda demostrada la relación existente entre ambas funciones.

3.11 Probar la relación entre las funciones $\pi(x)$ y $\zeta(s)$

La función $\pi(x)$ se relaciona con la función $\zeta(s)$ porque $\ln \zeta(s) = s \int_{-\infty}^{\infty} \frac{\pi(x)}{r(x^s-1)} dx$. El teorema de los números primos afirma que para grandes valores de x, esta función está próxima a $\frac{x}{\ln(x)}$, lo que quiere decir que $\lim_{x\to\infty}\frac{\pi(x)\cdot\ln(x)}{x}=1$.

3.12 Demostrar que para todo entero $n \ge 1$, existe por lo menos un entero m diferente de n tal que $\varphi(m) = \varphi(n)$, siendo $\varphi(x)$ la función Indicatriz de Euler.

Se trata de la conjetura o hipótesis de Robert Daniel Carmichael (1879-1967). Aunque laborioso de encontrar, hay muchos, lo que no se sabe si su conjunto es finito o infinito. Probemos con el 7 y el 14. Para $\varphi(7) = 7(\frac{7-1}{7}) = 6$ y $\varphi(14) = 7(\frac{2-1}{7} \cdot \frac{7-1}{7}) = 6$. El primero es primo, por tanto tiene tantos primos con él como números compongan su sistema completo de restos. El segundo es compuesto 14 = 2.7, luego tomamos dos números en el desarrollo y obtendremos 6 números $\{1,3,5,9,11,13\}$ que son primos respecto al número 14.

Por este procedimiento pueden encontrarse algunas parejas como

$$\varphi(25) = \varphi(33) = 20$$
 $\varphi(61) = \varphi(77) = 60$ $\varphi(203) = \varphi(215) = 168$ $\varphi(41) = \varphi(55) = 40$ $\varphi(84) = \varphi(90) = 24$ $\varphi(488) = \varphi(496) = 240$

3.13 Demostrar la utilidad de la función $\lambda(n)$.

La función $\lambda(n)$ se utiliza para la búsqueda de números de Carmichael. Si n es un número compuesto tal que satisface la congruencia $a^n \equiv a(m \delta d.n)$ y mcd(a,n) = 1, n es un número de Carmichael.

Si la congruencia es de la forma $b^{n-1} \equiv 1 \pmod{n}$ o $2^n \equiv 2 \pmod{n}$, se consideran pseudo-primos de base b o pseudo-primos cuadráticos, respectivamente.

Es de observar la similitud que existe con el teorema de Fermat, que exige que n sea primo.

Al tratarse de módulos compuestos, su cálculo se reduce considerablemente aplicando el *Sistema Chino de Restos*.

Como muestra, vea la siguiente tabla:

$a^n \equiv a(m \acute{o} d.n)$	$b^{n-1} \equiv 1(m \acute{o} d.n)$	$2^n \equiv 2(m \acute{o} d.n)$
$12^{91} \equiv 12 (m\acute{o}d.91)$	$2^{340} \equiv 1 (m \acute{o} d.341)$	$2^{341} \equiv 2(m\acute{o}d.341)$
$16^{51} \equiv 16 (m\acute{o}d.51)$	$2^{560} \equiv 1 (m \acute{o} d.561)$	$2^{561} \equiv 2(m\acute{o}d.561)$
$23^{759} \equiv 23 (m \acute{o} d.759)$	$2^{2820} \equiv 1(m\acute{o}d.2821)$	$2^{645} \equiv 2(m\acute{o}d.645)$
$107^{321} \equiv 107 (m\acute{o}d.321)$	$12^{90} \equiv 1 (m \acute{o} d.91)$	$2^{1729} \equiv 2(m\acute{o}d.1729)$
$617^{1234} \equiv 617 (m \acute{o} d. 1234)$	$148^{744} \equiv 1(m\acute{o}d.745)$	$2^{2821} \equiv 2(m\acute{o}d.2821)$

15.4 Grupos Multiplicativos

4.1 Concepto de grupo

Un conjunto no vacío G sobre el cual se ha definido una operación binaria \circ (adición o multiplicación) se llama grupo con respecto a esta operación si para cualesquiera $a,b,c\in G$ se verifica que:

- I. Para todos $a,b \in G$, $a \circ b \in G$, G es cerrado mediante \circ .
- II. Para toda $a,b,c \in G$, $(a \circ b) \circ c = a \circ (b \circ c)$ es una propiedad asociativa.
- III. Existe un $e \in G$ tal que $a \circ e = e \circ a = a$, para todo $a \in G$, como un elemento de identidad o neutro.
- IV. Para cada $a \in G$ existe un elemento $b \in G$ tal que $a \circ b = b \circ c = e$, existencia de inversos.
- V. Para todo $a \in G$ existe un $a^{-1} \in G$ tal que $a \circ a^{-1} = a^{-1} \circ a = u$ como elemento simétrico.
- VI. Si $a,b,c \in G$, como $a \circ b = b \circ c$ también $b \circ a = c \circ a$, entonces b = c es la ley de cancelación.
- VII. Para $a,b \in G$, cada una de las ecuaciones $a \circ x = b$ e $y \circ a = b$ tiene una solución única.
- VIII. Si $a \in G$, el simétrico del simétrico de a es a es decir, $(a^{-1})^{-1} = a$.
 - IX. Para cualesquiera $a,b,...,p,q \in G$, es $(a \circ b \circ ... \circ p \circ q)^{-1} = q^{-1} \circ p^{-1} \circ ... \circ b^{-1} \circ a^{-1}$.
 - X. Si, demás, $a \circ b = b \circ a$ para todos $a, b \in G$, entonces G es un grupo conmutativo o abeliano.

El adjetivo abeliano es en honor al matemático noruego Niels Henrik Abel (1802-1829).

Para cualquier $a \in G$ y cualquier $m \in Z^+$, se define

$$a^m = a \circ a \circ a \circ ... \circ a$$
 de m factores. $a^0 = e$, el elemento neutro de G . $a^{-m} = (a^{-1})^m = a^{-1} \circ a^{-1} \circ a^{-1} \circ ... \circ a^{-1}$ de m factores.

Para todo $a \in G$, $a^m \circ a^n = a^{m+n}$ y $(a^m)^n = a^{mn}$, con $m, n \in Z$.

Con la suma ordinaria, \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} son cada uno un grupo abeliano. Ninguno de ellos es un grupo mediante la multiplicación, pues 0 no tiene inverso multiplicativo. Sin embargo \mathbb{Q}^* , \mathbb{R} * y \mathbb{C} *, los elementos no nulos de \mathbb{Q} , \mathbb{R} y \mathbb{C} , respectivamente, son grupos abelianos multiplicativos.

Si $(\mathbb{R},+,\cdot)$ es un anillo, entonces $(\mathbb{R},+)$ es un grupo abeliano; los elementos distintos de un cuerpo forman un grupo abeliano multiplicativo.

Para $n \in \mathbb{Z}^+$, n > 1, tenemos que $(\mathbb{Z}_n, +)$ es un grupo abeliano. Si p es primo, (\mathbb{Z}_p^*, \cdot) es un grupo abeliano.

Para cualquier grupo G, el número de elementos de G es el orden de G que podemos denotar como |G|. Cuando el número de elementos de un grupo no es finito, decimos que G tiene orden infinito.

Se entiende por orden de un grupo G el número de elementos del conjunto y por orden de un elemento $a \in G$ el menor entero positivo n, si existe, para el cual $a^n = e$, es el elemento neutro de G. Si $a \neq 0$ es un elemento del grupo aditivo \mathbb{Z} , entonces, puesto que $na \neq 0$ para todo entero positivo n, el orden de a es infinito.

Sea $G = \{a,b,c,...\}$ un grupo respecto a \circ . Cualquier subconjunto no vacío G' de G se llama subgrupo de G si G' es él mismo un grupo con respecto a \circ . Evidentemente G' = e, donde e es el elemento neutro de G y G mismo, son subgrupos de cualquier grupo G.

4.2 Grupos cíclicos y generadores

Un $grupo\ c\'iclico$ es un grupo que puede ser generado por un solo elemento; es decir, hay un elemento g del grupo G, llamado "generador" de G, tal que todo elemento de G puede ser expresado como una potencia de g. Si la operación del grupo se denota aditivamente, se dirá que todo elemento de G se puede expresar como ng, para n entero. En otras palabras, G es cíclico, con un generador g, si $G = \left\{g^n \mid n \in \mathbb{Z}\right\}$. Dado que un grupo generado por un elemento de G es, en sí mismo, un subgrupo de G, basta con demostrar que el único subgrupo de G que contiene a g es el mismo G para probar que éste es cíclico.

Por ejemplo, $G = \left\{e, g^1, g^2, g^3, g^4\right\}$ es cíclico. De hecho, G es esencialmente igual (esto es, isomorfo) al grupo $\left\{1, 2, 3, 4\right\}$ bajo la operación de suma m'odulo 5. El isomorfismo se puede hallar fácilmente haciendo $g \to 1$.

Salvo isomorfismos, existe exactamente un grupo cíclico para cada cantidad finita de elementos, y exactamente un grupo cíclico infinito. Por lo anterior, los grupos cíclicos son de

algún modo los más simples, y han sido completamente clasificados. Por esto, los grupos cíclicos normalmente se denotan simplemente por el grupo "canónico" al que son isomorfos: si el grupo es de orden n, para n entero, dicho grupo es el grupo \mathbb{Z}_n de enteros $\{0,1,\ldots,n-1\}$ bajo la adición $m \acute{o} dulo n$. Si es infinito, éste es, como cabe esperarse, \mathbb{Z} .

4.3 Clases y órdenes

Si la congruencia $x \equiv a(m \acute{o} d.m)$ es una relación de equivalencia que permite clasificar a los números enteros, y por tanto los naturales, en clases de equivalencia, conjuntos formados por cada número entero y todos sus congruentes. En este caso se llaman clases de restos o residuales, porque cada clase se puede representar por el resto que resulta al dividir cualquier elemento entre el $m \acute{o} du lo m$.

Las clases $m \acute{o} du lo m$ se representan por $\mathbb{Z}/m\mathbb{Z}$ \acute{o} por $\mathbb{Z}m$.

- 1. Para $\mathbb{Z}/2\mathbb{Z} = \{0,1\}$, que son los dos restos producidos al dividir entre 2. El elemento 0 representa a los números pares y el 1 a los números impares.
- 2. Para $\mathbb{Z}/5\mathbb{Z} = \{0,1,2,3,4\}$, en el que, por ejemplo el elemento 3 representa a los números 3,8,13,18,23,..., que dan resto 3 al dividir por 5.

La clase $\mathbb{Z}/m\mathbb{Z}$ contiene exactamente m elementos: $\{0,1,3,4,5,6,...,m-1\}$. A veces se usan restos mínimos, admitiendo números positivos y negativos, mediante la elección entre a y a-m del número con menor valor absoluto.

En los sistemas algebraicos las clases de restos tienen estructura de anillo para la suma y el producto. El grupo aditivo de ese anillo es cíclico, pues para cada elemento a del mismo existe un h tal que $a \cdot h = 0$. Ese número h ha de ser divisor del $m \acute{o} dulo m$.

No todos los elementos tienen inverso. En caso afirmativo, se llaman inversibles, y su conjunto coincide con las clases representadas por números primos con m, incluyendo el 1. Por tanto, su número coincide con $\varphi(m) = m(1-1/p_1),...,(1-1/p_n)$, denominado Indicatriz de Euler. El inverso vendrá determinado por $a^{\varphi(m)} \equiv 1(m \acute{o} d.m)$.

Los elementos inversibles forman un grupo multiplicativo, al que representaremos como \mathbb{Z}_m^* , que son las clases residuales reducidas. Este carácter de grupo da lugar a que, si a es inversible en \mathbb{Z}_m^* , existe un número natural r tal, que $a^r = 1$. El número r mínimo que cumple la anterior igualdad se llama, para todos los grupos orden, indice o gaussiano de <math>a.

Es fácil ver que si $a^n \equiv 1 \pmod{m}$, el exponente n deberá ser múltiplo del orden r. Otra consecuencia es que, si a es primo con m y se cumple que $a^x = a^y$ entonces, han de ser x = y. Si m es primo, serán inversibles todos los elementos y constituirán un cuerpo.

Si a,m son dos enteros positivos mcd(a,m)=1, si $\varphi(m)=e$, entonces $a^e\equiv 1(m\acute{o}d.m)$ y se denota como $ord_m=a$. El orden multiplicativo de a $m\acute{o}dulo$ m es el menor entero positivo e que cumple $a^e\equiv 1(m\acute{o}d.m)$. Por ejemplo, para determinar el orden multiplicativo de a $m\acute{o}dulo$ 7, a0, a1, a2, a3, a4, a5, a5, a6, a7, a6, a7, a7, a8, a9, a9

Algunas de las propiedades de los órdenes multiplicativos son:

- 1. Si $ord_m a = e$, entonces $a^n \equiv 1 \pmod{m}$ si, y sólo si $e \mid n$.
- 2. Si p es primo, entonces $ord_m a \mid p-1$. En particular $ord_m a \mid \varphi(m)$.
- 3. Si $ord_m a = e$, entonces $a^s \equiv a^t (m \acute{o} d.m)$ si, y sólo si $s \equiv t (m \acute{o} d.e)$. Como mcd(a,m) = 1, esto implica que $a^{|s-t|} \equiv 1 (m \acute{o} d.m)$.

Referente al ejemplo anterior, como $4^2 \equiv 2(m\acute{o}d.7)$ y $4^3 \equiv 1(m\acute{o}d.7)$, $4^2 \equiv 4^3(m\acute{o}d.7)$ equivalente a $4^2 - 4^3 \equiv 1(m\acute{o}d.7)$.

Por ejemplo, comprobar la relación entre $ord_{13}7$. y $ord_{13}5$. Como mcd(5,13)=1=mcd(7,13), calculamos $5^e, 7^e \equiv 1 (m\acute{o}d.13)$, donde e es igual a $5^1, 5^2, 5^3, 5^4 \equiv (m\acute{o}d.13)=5,12,8,1$, por tanto $5^4 \equiv 1 (m\acute{o}d.13)$ y el orden multiplicativo $ord_{13}5=4$.

Ejemplo, encontrar todos los elementos de $ord_{21}5$. Como $\varphi(21) = \varphi(3)\varphi(7) = 2 \cdot 6 = 12$, los factores positivos de 12, son $\{1,2,3,4,6,12\}$ suficientes para valorar $ord_{21}5$.

Como $5^1, 5^2, 5^3, 5^4, 5^6 \equiv (m \acute{o} d. 21) = 5, 4, 20, 16, 1$, luego $5^6 \equiv 1 (m \acute{o} d. 21)$ y $ord_{21} 5 = 6$ es el orden multiplicativo.

4.4 Raíces de la unidad y primitivas

Si $z\in\mathbb{C}$ y $n\geq 2$, z es una raíz n-ésima de la unidad sí $z^n=1$. Si tenemos en cuenta que en forma polar $z=re^{i\theta}$, entonces, por la formula de Moivre $z^n=r^ne^{i\theta}$ luego, para que z sea raíz n-ésima de la unidad, debe cumplirse $z^n=1$ \wedge $(\exists k\in\mathbb{Z})n\theta=2k\pi$. Como $r\geq 0$ es un número real, debe tenerse en cuenta que r=1, y la condición sobre θ es $(\exists k\in\mathbb{Z})\theta=\frac{2k\pi}{n}$,

luego todos los números complejos de la forma $z = e^{\frac{i2k\pi}{n}}$ son raíces n-ésimas de la unidad. Si elegimos $r \in \{0,1,2,...,n-1\}$ tal que $k \equiv_n r$, es decir que k = r + nt, con $t \in \mathbb{Z}$, entonces

$$e^{i\frac{2k\pi}{n}} = e^{i\left(\frac{2r\pi}{n} + 2t\pi\right)} = e^{i\frac{2r\pi}{n}}e^{i2t\pi} = e^{i\frac{2r\pi}{n}} \cdot 1 = e^{i\frac{2r\pi}{n}}$$

Una raíz n-ésima de la unidad es cualquiera de los números complejos z que satisfacen a la ecuación $z^n=1$. Las n raíces de la unidad son los números $e^{2\pi i k/n}$, donde k y n son coprimos y representan n a la raíz y k numerando las correspondientes soluciones para los enteros comprendidos entre k=0 y k=n-1, o lo que es lo mismo

$$\cos \frac{2k\pi}{n} + sen \frac{2k\pi}{n}i$$
, con $(k = 0, 1, 2, ..., n - 1)$

Las raíces n-ésimas de la unidad no reales aparecen en pares de conjugados.

Una raíz primitiva de la unidad z es primitiva si todas las demás son potencias de z. Por ejemplo, i es una raíz cuarta de la unidad primitiva, pero -1 no lo es, puesto que sus potencias impares son -1 y las pares +1.

El número de raíces primitivas diferentes viene determinado por la función Euler, $\varphi(n)$. Por ejemplo, para $z^1=1$ sólo hay una raíz primera de la unidad, igual a 1. Para $z^2=1$ hay dos raíces: $z_1=e^{2\pi i1/2}=-1$ y $z_2=e^{2\pi i2/2}=1$. Para $z^3=1$ hay tres raíces: $z_1=e^{2\pi i3/3}=1$,

$$z_2 = e^{2\pi i 1/3} = \frac{-1 + i\sqrt{3}}{2} \text{ y } z_3 = e^{2\pi i 2/3} = \frac{-1 - i\sqrt{3}}{2}.$$

Las raíces de la unidad de la ecuación cúbica corresponden a los llamados enteros de Eisenstein, en honor a Ferdinand Gotthold Eisenstein (1823-1852), y se representan como $\pm 1, \pm \omega, \pm \omega^2$.

La raíz primitiva $e^{-2\pi i/n}$ o su conjugada $e^{2\pi i/n}$ se denotan a menudo como ω_n , especialmente en las transformaciones discretas de Fourier.

Como los ceros del polinomio $p(z) = z^n - 1$ son precisamente las raíces n-ésima de la unidad, cada uno con multiplicidad 1, el polinomio ciclotómico n-ésimo está definido por el hecho de que sus ceros son, precisamente, las raíces primitivas n-ésima de la unidad, cada una con multiplicidad 1.

Si $n \geq 2$, la suma de las n raíces de la unidad vale 0. Como $e^{2k\pi i/n}$, k=0,1,...,n-1, la suma resulta $S=\sum_{k=0}^{n-1}e^{2\pi ik/n}$. Si tenemos en cuenta que $e^{2\pi ik/n}=(e^{2\pi i/n})^k$, entonces resulta $S=\sum_{k=0}^{n-1}(e^{2\pi i/n})^k$. Como $n\geq 2$ y $e^{2\pi i/n}\neq 1$, obtenemos

$$S = \frac{(e^{2\pi i/n})^0 - (e^{2\pi i/n})^n}{1 - e^{2\pi i/n}} = \frac{1 - 1}{1 - e^{2\pi i/n}} = 0$$

Por ejemplo, para $z^7=1$. Si tenemos en cuenta que $z^{\varphi(7)}=1 \to z^6-1=0$, utilizando la fórmula de Moivre, obtenemos

$$\begin{split} &z_0\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=1\\ &z_1\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=\frac{1}{2}+\frac{\sqrt{3}}{2}i\\ &z_2\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=-\frac{1}{2}+\frac{\sqrt{3}}{2}i\\ &z_3\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=-1\\ &z_4\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\\ &z_5\!=\!\cos(2k\pi/6)+\sin(2k\pi/6)i=\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{split}$$

Ahora, si
$$S = \sum_{k=1}^{6} e^{2\pi i k/7} = e^{-\frac{2i\pi}{7}} + e^{\frac{2i\pi}{7}} + e^{\frac{-4i\pi}{7}} + e^{\frac{4i\pi}{7}} + e^{\frac{-6i\pi}{7}} + e^{\frac{6i\pi}{7}}$$
, tenemos

$$S = \frac{1 - 1}{1 - e^{\frac{6i\pi}{7}}} = 0$$

4.5 Estructura de los anillos

El anillo de los enteros $(m \acute{o} d. \, \mathrm{m})$ se denota como $\mathbb{Z}/m\mathbb{Z}$, es decir, el anillo de enteros módulo, el ideal $m\mathbb{Z}=m$ que consta de los múltiplos de m o por $\mathbb{Z}m$. El anillo de enteros módulo lo denominamos $(\mathbb{Z}/m\mathbb{Z})^*$.

Veamos algunos ejemplos de clases con exponentes de 2.

Para $M\'odulo\ 2$ tiene s\'olo una clase de congruencia con primos relativos, 1, por lo que $(\mathbb{Z}/2\mathbb{Z})^* \cong \{1\}$, es trivial.

Para $M\acute{o}dulo~4$ tiene dos clases de congruencias con primos relativos, 1 y 3, por lo que $(\mathbb{Z}/4\mathbb{Z})^* \cong C_2$, es el grupo cíclico de dos elementos.

Para M'odulo~8 tiene cuatro clases de congruencias con primos relativos, 1,3,5 y 7. El cuadrado de cada una de ellas es 1, por lo que $(\mathbb{Z}/8\mathbb{Z})^* \cong C_2 \cdot C_2$, es el grupo cíclico de cuatro elementos.

Para M'odulo 16 tiene ocho clases de congruencias con primos relativos 1,3,5,7,9,11,13 y 15 que representamos como $\{\pm 1,\pm 7\}\cong C_2\cdot C_2$, es el subgrupo 2-torsión es decir, el cuadrado de cada elemento es 1, por lo que $(\mathbb{Z}/16\mathbb{Z})^*$ no es cíclico. Las potencias de 3, $\{1,3,9,11\}$ es un subgrupo de orden 4, al igual que las potencias de 5, $\{1,5,9,13\}$. Así

$$(\mathbb{Z}/16\mathbb{Z})^* \cong C_2 \cdot C_4$$
.

El modelo que se muestra para el 8 y el 16 es válido para potencias superiores a 2^k , k > 2:

es el subgrupo 2-torsión, por lo que $(\mathbb{Z}/2^k\mathbb{Z})^*$ no es cíclico y las potencias de 3 son un subgrupo de orden 2^{k-2} , luego

$$(\mathbb{Z}/2^k\mathbb{Z})^* \cong C_2 \cdot C_{2^{k-2}}.$$

En las potencias de los números primos impares de la forma p^k , el grupo es cíclico:

$$(\mathbb{Z}/2^k\mathbb{Z})^* \cong C_{p^{k-1}(p-1)} \cong C_{\varphi(2^k)}$$

Por el teorema chino del resto si $n = p_1^{k_1} p_2^{k_2} p_3^{k_3} \dots$, el anillo $\mathbb{Z}/m\mathbb{Z}$ es el producto directo de los anillos correspondientes a cada uno de sus factores de exponentes primarios:

$$\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/p_1^{k_1}\mathbb{Z} \cdot \mathbb{Z}/p_2^{k_2}\mathbb{Z} \cdot \mathbb{Z}/p_3^{k_3}\mathbb{Z} \dots$$

Del mismo modo, el grupo de unidades $(\mathbb{Z}/m\mathbb{Z})^*$ es el producto directo de los grupos correspondientes a cada uno de los factores de exponentes primarios:

$$(\mathbb{Z}/m\mathbb{Z})^* \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^* \cdot (\mathbb{Z}/p_2^{k_2}\mathbb{Z})^* \cdot (\mathbb{Z}/p_3^{k_3}\mathbb{Z})^* \dots$$

El orden del grupo viene determinado por la función Indicatriz de Euler :

$$|(\mathbb{Z}/m\mathbb{Z})^*| = \varphi(m)$$

este es el producto de los órdenes de los grupos cíclicos en el producto directo.

El exponente viene determinado por la función de Carmichael $\lambda(m)$, que es el Mínimo Común Múltiplo de los órdenes de los grupos cíclicos. Esto significa que, dado m

$$a^{\lambda(m)} \equiv 1(m \acute{o} d.m)$$

para cualquier a relativamente primo con m y donde $\lambda(m)$ es el menor número.

 $(\mathbb{Z}/m\mathbb{Z})^*$ es cíclico si y sólo si $\varphi(m) = \lambda(m)$. Este es el caso precisamente cuando m es 2, 4, una potencia de un primo impar, o dos veces el exponente de un primo impar. En este caso, el generador es una raíz primitiva módulo m.

Ya que todos $\log (\mathbb{Z}/n\mathbb{Z})^*$ con m=1,2,3,...,7 son cíclicos, otra forma es que: Si m<8 entonces $(\mathbb{Z}/m\mathbb{Z})^*$ es una raíz primitiva. Si $m\geq 8$ es una raíz primitiva si m es divisible por 4 o por dos primos impares distintos.

En general, hay un generador para cada factor directo cíclicos.

La función de Carmichael (ver http://oeis.org/A002322), en honor a Robert Daniel Carmichael (1879-1967), puede ser definida como:

$$\lambda(m) = \begin{cases} p^{k-1}(p-1) & \text{si } m = p^k, \ p \ge 3, k \le 2 \\ 2^{k-2} & \text{si } m = 2^k, \ k \ge 3 \\ mcm = [\lambda(p_1^{k_1}), (p_2^{k_2}), ..., (p_t^{k_t})] & \text{si } m = \prod_{i=1}^t p_i^{k_i} \end{cases}$$

Utilizando A002322 o la función CarmichaelLambda[m] de Mathematica, obtenemos los valores de los 30 primeros números, que son:

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\lambda(m)$	1	1	2	2	4	2	6	2	6	4	10	2	12	6	4	4	16	6	18	4

Por ejemplo, para $(\mathbb{Z}/21\mathbb{Z})^* \cong C_6 \cdot C_2$ tenemos

Exponente:
$$\varphi(21) = (3-1)(7-1) = 12$$

Grupo $z^{\varphi(21)} = z^{12} \equiv 1 \pmod{.21} = \{1,2,4,5,8,10,11,13,16,17,19,20\}$
 $z^{\lambda(21)} = z^6 \equiv 1 \pmod{.21} = \{1,2,4,5,8,10,11,13,16,17,19,20\}$

Si tenemos en cuenta que $\varphi(21) = (3-1)(7-1) = 2 \cdot 6 = 12$, donde los factores positivos de 12 son 1,2,3,4,6 y 12 números posibles para valorar $ord_{21}5$, 5 = (4+6)/2, y si $5^1,5^2,5^3,5^4,5^6 \equiv (m\acute{o}d.21) = 5,4,20,16,1$

donde $5^6 \equiv 1 \pmod{.21}$, entonces $ord_{21}5 = 6$, que es igual a $\lambda(21) = 6$.

Como

$$2^{6}, 2^{12}, 2^{18} \equiv 1 \pmod{.21}$$

 $20^{2}, 20^{4}, 20^{6}, 20^{8}, 20^{10}, 201^{2}, 20^{14}, 20^{16}, 20^{18}, 20^{20} \equiv 1 \pmod{.21}$

podemos decir que este grupo multiplicativo tiene dos generadores: g = 2,20.

Los valores para $z^6 - 1 = 0$ son

$$z = \pm 1, \ z = (-1)^{1/3} = \frac{1}{2} + \frac{\sqrt{3}i}{2} = -e^{-\frac{2i\pi}{3}}, \ z = -(-1)^{1/3} = -\frac{1}{2} - \frac{\sqrt{3}i}{2} = e^{-\frac{2i\pi}{3}},$$
$$z = (-1)^{2/3} = -\frac{1}{2} + \frac{\sqrt{3}i}{2} = e^{\frac{2i\pi}{3}}, \ z = -(-1)^{2/3} = \frac{1}{2} - \frac{\sqrt{3}i}{2} = -e^{\frac{2i\pi}{3}}$$

y dado que $(\pm (-1))^3 = \left(\pm \frac{1}{2} \pm \frac{\sqrt{3}i}{2}\right)^3 = \left(\pm e^{\frac{\pm i\pi}{3}}\right)^3 = \pm 1$, podemos asegurar que $w^3 = -1$ con $w = \exp(\pi i/3)$.

La tabla siguiente recoge algunas características de los grupos multiplicativos

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g
2	{1}	1	1	1
3	C_2	2	2	2
4	C_2	2	2	3
5	C_4	4	4	2
6	C_2	2	2	5
7	C_6	6	6	3
8	$C_2 \times C_2$	4	2	3,7
9	C_6	6	6	2
10	C_4	4	4	3
11	C_{10}	10	10	2

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g
12	$C_2 \times C_2$	4	2	5,7
13	C_{12}	12	12	2
14	C_6	6	6	3
15	$C_2 \times C_4$	8	4	2,14
16	$C_2 \times C_4$	8	4	3,15
17	C_{16}	16	16	3
18	C_6	6	6	5
19	C_{18}	18	18	2
20	$C_2 \times C_4$	8	4	3,19
21	$C_2 \times C_6$	12	6	2,20

15.5 Función carácter de Dirichlet

5.1 Función Carácter.

Sea G un grupo abeliano finito, escrito de forma aditiva. Carácter de grupo es un homomorfismo $\chi:G\to C^*$, donde G^* es el grupo multiplicativo de los números complejos no nulos. Entonces $\chi(0)=1$ y $\chi(g_1+g_2)=\chi(g_1)\chi(g_2)$ para todo $g_1,g_2\in G$. Si χ es un carácter del grupo multiplicativo G, entonces $\chi(1)=1$ y $\chi(g_1g_2)=\chi(g_1)\chi(g_2)$ para todo $g_1,g_2\in G$. Se define el carácter de $\chi(0)$ en G por $\chi_0(g)=1$ para todos los $g\in G$. Si G es un grupo aditivo de orden $g_1,g_2\in G$ tiene orden $g_1,g_2\in G$.

$$\chi(g)^d = \chi(dg) = \chi(0) = 1$$

y por tanto $\chi(g)$ es raíz de la unidad.

Se define el producto de caracteres χ_1 y χ_2 como

$$\chi_1\chi_2(g) = \chi_1(g)\chi_2(g)$$

para todo $g \in G$. Es un producto asociativo y conmutativo. El carácter χ_0 es una identidad multiplicativa, tal que

$$\chi_0 \chi(g) = \chi_0(g) \chi(g) = \chi(g)$$

para cualquier carácter $\chi, g \in G$.

El inverso del carácter χ es el carácter χ^{-1} , que podemos definir como

$$\chi^{-1}(g) = \chi(-g)$$

El conjugado del carácter χ es $\overline{\chi}$ que podemos definir como

$$\overline{\chi}(g) = \overline{\chi}(\overline{g})$$

El dual de un grupo cíclico de orden n es un grupo cíclico de orden n. Presentamos las funciones exponenciales

$$e(x) = e^{2\pi ix}$$
 o bien $e(x) = e(\frac{x}{n}) = e^{2\pi ix/n}$

Las raíces n-ésima de la unidad son los números complejos $e_n(a)$ para todo a=0,1,...,n-1. Si G es un grupo finito de orden n con un generador.

En teoría de números, los caracteres de Dirichlet son un cierto tipo de funciones aritméticas que se derivan de caracteres completamente multiplicativos sobre las unidades $\mathbb{Z}/k\mathbb{Z}$. Si χ es un carácter de Dirichlet, se define su serie L de Dirichlet de la siguiente forma:

$$L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$$

donde s es un número complejo con la parte real mayos que 1. Por continuación analítica, esta función puede ser extendida a una función meromorfa en todo el plano complejo. Los caracteres de Dirichlet son llamados así en honor a Johann Peter Gustav Lejeune Dirichlet.

Como definición axiomática, un carácter de Dirichlet es cualquier función χ de números enteros a números complejos, con las siguientes propiedades:

- 1. Existe un entero positivo k tal que $\chi(n) = \chi(n+k)$ para todo n.
- 2. Si mcd(n,k) > 1 entonces $\chi(n) = 0$; si mcd(n,k) = 1, entonces $\chi(n) \neq 0$.
- 3. $\chi(mn) = \chi(m)\chi(n)$ para todos los enteros m y n.
- 4. $\chi(1) = 1$.
- 5. Si $a \equiv b(m \acute{o} d.k)$, $\chi(a) = \chi(b)$.
- 6. Para todo a primo relativo con k, $\chi(a)$ es una $\varphi(n) \acute{e}sima$ raíz de la unidad compleja.

Estas propiedades son importantes:

Por la propiedad 3), $\chi(1) = \chi(1 \cdot 1) = \chi(1)\chi(1)$; puesto que el mcd(1,k) = 1, por la propiedad 2) tenemos $\chi(1) \neq 0$, que nos lleva a la propiedad $\chi(1) = 1$, que es la forma principal o trivial.

Las propiedades 3) y 4) nos muestran que cada carácter es completamente multiplicativo, así la propiedad 1) dice que un carácter es periódico con periodo k; se dice que χ es un carácter según el $m\acute{o}d.k$. Si el mcd(1,k)=1, por la función Indicatriz de Euler tenemos $a^{\varphi(k)}\equiv 1(m\acute{o}d.k)$, por tanto $\chi(a^{\varphi(k)})\equiv \chi(1)=1$ y $\chi(a^{\varphi(k)})=\chi(a)^{\varphi(k)}$.

Un carácter se llama real si sus valores son reales únicamente. Si el carácter no es real, se dice que es complejo.

El signo de un carácter χ depende de su valor en -1. Específicamente, se dice que χ es impar si $\chi(-1)=-1$ y par si $\chi(-1)=1$, esto es

$$\chi(n) = \begin{cases} (-1)^{(n-1)/n} & \text{si n es Impar} \\ 0 & \text{si n es Par} \end{cases}$$

Si \mathbb{Z}_n^* es un grupo multiplicativo del orden $\varphi(n)$, y \mathbb{Z}_n su inverso, dado un carácter de Dirichlet $\chi \in \mathbb{Z}_n^*$, es posible extenderlo a \mathbb{N} de manera que sea una función aritmética completamente multiplicativa. En efecto, si $\chi : \mathbb{N} \to \mathbb{C}$ tenemos

$$\chi(a) = \begin{cases} \chi(\overline{a}) & \text{si } (a,n)=1\\ 0 & \text{si } (a,n)>1 \end{cases}$$

Sea $\chi:\mathbb{N}\to\mathbb{C}$ un carácter de Dirichlet módulo n, entonces algunas de sus propiedades son:

- I. $\chi(a) = \chi(b)$, si $a \equiv b(m \acute{o} d.n)$
- II. $\chi(ab) = \chi(a)\chi(b), \forall a,b \in \mathbb{N}$
- III. $\chi(a) = 0$, si(a,n) > 1
- IV. $|\chi(a)| = 1$, si(a,n) = 1

V.
$$\sum_{a(m\acute{o}d.n)} \chi(a) = \begin{cases} \varphi(n) & \text{si a} \equiv 1(m\acute{o}d.n) \\ 0 & \text{si a} \not\equiv 1(m\acute{o}d.n) \end{cases}$$
VI.
$$\sum_{\chi(m\acute{o}d.n)} \chi(a) = \begin{cases} \varphi(n) & \text{si } \chi = \chi_1 \\ 0 & \text{si } \chi \neq \chi_1 \end{cases}$$

Si $n = n_1 n_2$, con $mcd(n_1, n_2) = 1$, entonces

$$(\mathbb{Z}/n\mathbb{Z})^* \cong (\mathbb{Z}/n_1\mathbb{Z})^* \times (\mathbb{Z}/n_2\mathbb{Z})^*$$

así que cada carácter multiplicativo $\chi(m \acute{o} d.n)$ es producto $\chi_1 \cdot \chi_2$ de los caracteres multiplicativos $\chi_1(m \acute{o} d.n_1)$ y $\chi_2(m \acute{o} d.n_2)$, por lo que quedan establecidas las relaciones de ortogonalidad de los grupos multiplicativos módulo n.

5.2 Tablas

A partir de los conocimientos que tenemos de los grupos multiplicativos con módulo n, vamos a proceder a calcular la función χ del carácter de Dirichlet. Los datos que nos servirán de base serán los valores de:

$n (\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
--------------------------------	--------------	--------------	---	---

5.2.1 Tabla del número 2

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
2	C_2	1	1	1	{1}

En $\varphi(2) = 1$ hay $\varphi(2) \equiv 1$ carácter(m'od.2). Tenga en cuenta que χ depende totalmente de $\chi(1)$ ya que 1 genera el grupo de unidades del m\'odulo 2.

n	1
$\chi_1(n)$	1

5.2.2 Tabla del número 3

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
3	C_2	2	2	2	{1,2}

En $\varphi(3) = 2$ hay $\varphi(3) \equiv 2$ carácter $(m \circ d.3)$. Tenga en cuenta que χ depende totalmente de $\chi(2)$ ya que 2 genera el grupo de unidades módulo 3.

n	1	2
$\chi_1(n)$	1	1
$\chi_2(n)$	1	-1

5.2.3 Tabla del número 4

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
4	C_2	2	2	3	{1,3}

En $\varphi(4)=2$ hay $\varphi(2)\equiv 2$ $car\'{a}cter(m\'{o}d.4)$. Tenga en cuenta que χ depende totalmente de $\chi(3)$ ya que 3 genera el grupo de unidades m\'{o}dulo 4.

n	1	3
$\chi_1(n)$	1	1
$\chi_2(n)$	1	-1

5.2.4 Tabla del número 5

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
5	C_4	4	4	2	{1,2,3,4}

En $\varphi(5)=4$ hay $\varphi(5)\equiv 4$ $car\'{a}cter(m\'{o}d.5)$. Tenga en cuenta que χ depende totalmente de $\chi(2)$ ya que 2 genera el grupo de unidades m\'{o}dulo 5.

n	1	2	3	4
$\chi_1(n)$	1	1	1	1
$\chi_2(n)$	1	i	-i	-1
$\chi_3(n)$	1	-1	-1	1
$\chi_4(n)$	1	-i	i	-1

5.2.5 Tabla del número 6

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
6	C_2	2	2	5	{1,5}

En $\varphi(6)=2$ hay $\varphi(6)\equiv 2$ $carácter(m\acute{o}d.6)$. Tenga en cuenta que χ depende totalmente de $\chi(5)$ ya que 5 genera el grupo de unidades módulo 6.

n	1	5
$\chi_1(n)$	1	1
$\chi_2(n)$	1	-1

5.2.6 Tabla del número 7

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
7	C_6	6	6	3	{1, 2, 3, 4, 5, 6}

En $\varphi(7) = 6$ hay $\varphi(7) \equiv 6$ carácter $(m \circ d.7)$. Tenga en cuenta que χ depende totalmente de $\chi(3)$ ya que 3 genera el grupo de unidades módulo 7.

n	1	2	3	4	5	6
$\chi_1(n)$	1	1	1	1	1	1
$\chi_2(n)$	1	$e^{\frac{2i\pi}{3}}$	$e^{\frac{i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{-\frac{i\pi}{3}}$	-1
$\chi_3(n)$	1	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	1
$\chi_4(n)$	1	1	-1	1	-1	-1
$\chi_5(n)$	1	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	1
$\chi_6(n)$	1	$e^{-\frac{2i\pi}{3}}$	$e^{-\frac{i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{\frac{i\pi}{3}}$	-1

5.2.7 Tabla del número 8

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
8	$C_2 \times C_2$	4	2	3,7	{1,3,5,7}

En $\varphi(8)=4$ hay $\varphi(8)\equiv 4$ $car\'{a}cter(m\'{o}d.8)$. Tenga en cuenta que χ depende totalmente de $\chi(3)$ y $\chi(5)$ ya que 3 y 5 generan el grupo de unidades m\'{o}dulo 8.

n	1	3	5	7
$\chi_1(n)$	1	1	1	1
$\chi_2(n)$	1	1	-1	-1
$\chi_3(n)$	1	-1	1	-1
$\chi_4(n)$	1	-1	0	1

5.2.8 Tabla del número 9

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
9	C_6	6	6	2	{1, 2, 4, 5, 7, 8}

En $\varphi(9)=6$ hay $\varphi(9)\equiv 6$ $carácter(m\acute{o}d.9)$. Tenga en cuenta que χ depende totalmente de $\chi(2)$ ya que 2 genera el grupo de unidades módulo 9.

n	1	2	4	5	7	8
$\chi_1(n)$	1	1	1	1	1	1
$\chi_2(n)$	1	$e^{\frac{i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	-1
$\chi_3(n)$	1	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	1
$\chi_4(n)$	1	-1	1	-1	1	-1
$\chi_5(n)$	1	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	1
$\chi_6(n)$	1	$e^{-\frac{i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	-1

5.2.9 Tabla del número 10

	n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
ſ	10	C_4	4	4	3	{1,3,7,9}

n	1	3	7	9
$\chi_1(n)$	1	1	1	1
$\chi_2(n)$	1	i	-i	-1
$\chi_3(n)$	1	-1	-1	1
$\chi_4(n)$	1	-i	i	-1

5.2.10 Tabla del número 12

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
12	$C_2 \times C_2$	4	2	5,7	{1,5,7,11}

n	1	5	7	11
$\chi_1(n)$	1	1	1	1
$\chi_2(n)$	1	-1	1	-1
$\chi_3(n)$	1	1	-1	-1
$\chi_4(n)$	1	-1	-1	1

Observar que, una de las propiedades de estas tablas, es que la suma de filas y columnas es cero, salvo en la primera fila correspondiente a $\chi_1(n)$.

5.2.11 Tabla del número 14

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
14	C_6	6	6	3	{1,3,5,9,11,13}

Los valores de χ_2^n vienen determinados por

$$\chi_{2}(n) = \left\{1, (-1)^{1/3}, -(-1)^{2/3}, (-1)^{2/3}, -(-1)^{1/3}, -1\right\} = \left\{1, e^{\frac{i\pi}{3}}, e^{\frac{-i\pi}{3}}, e^{\frac{2i\pi}{3}}, e^{\frac{-2i\pi}{3}}, -1\right\}$$

n	1	3	5	9	11	13
$\chi_1(n)$	1	1	1	1	1	1
$\chi_2(n)$	1	$e^{\frac{i\pi}{3}}$	$e^{-\frac{i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	-1
$\chi_3(n)$	1	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	1
$\chi_4(n)$	1	-1	-1	1	-1	1
$\chi_5(n)$	1	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	1
$\chi_6(n)$	1	$e^{-\frac{i\pi}{3}}$	$e^{\frac{i\pi}{3}}$	$e^{-\frac{2i\pi}{3}}$	$e^{\frac{2i\pi}{3}}$	-1

5.2.12 Tabla del número 18

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
18	C_6	6	6	5	{1,5,7,11,13,17}

Si χ_2^n es equivalente a $\left\{1, -(-1)^{2/3}, -(-1)^{1/3}, (-1)^{1/3}, (-1)^{2/3}, -1\right\}$, $\left\{1, e^{-\frac{i\pi}{3}}, e^{-\frac{2i\pi}{3}}, e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}, -1\right\}$ y $\left\{1, \frac{1-\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}, \frac{1+\sqrt{3}i}{2}, \frac{-1+\sqrt{3}i}{2}, -1\right\}$, confeccionar la tabla de caracteres de Dirichlet.

Si tenemos en cuenta que $w = (-1)^{1/3} = \frac{1 + \sqrt{3}i}{2} = e^{\frac{i\pi}{3}}$, $w^3 = -1$, la tabla requerida podría tener una estructura como

n	1	5	7	11	13	17
$\chi_1(n)$	1	1	1	1	1	1
$\chi_2(n)$	1	W	w^2	$-w^2$	-w	-1
$\chi_3(n)$	1	w^2	-w	-w	w^2	1
$\chi_4(n)$	1	-1	1	-1	1	-1
$\chi_5(n)$	1	-w	w^2	w^2	-w	1
$\chi_6(n)$	1	$-w^2$	-w	W	w^2	-1

También podemos comprobar que la suma de las n raíces de la unidad vale 0, lo que nos proporciona una comprobación fehaciente de que el valor de la tabla es correcto.

5.2.13 Tabla del número 21

n	$(\mathbb{Z}/n\mathbb{Z})^*$	$\varphi(n)$	$\lambda(n)$	g	G
21	$C_2 \times C_6$	12	6	2,20	{1,2,4,5,8,10,11,13,16,17,19,20}

Si el valor χ_2^n es $\left\{1,(-1)^{2/3},-(-1)^{1/3},-(-1)^{2/3},1,(-1)^{1/3},-(-1)^{1/3},-1,(-1)^{2/3},(-1)^{1/3},-(-1)^{2/3},(-1)^{1/3},-(-1)^{2/3},-1\right\}$ equivalente a $\left\{1,e^{\frac{2i\pi}{3}},e^{\frac{-2i\pi}{3}},e^{\frac{-i\pi}{3}},1,e^{\frac{i\pi}{3}},e^{\frac{-2i\pi}{3}},-1,e^{\frac{2i\pi}{3}},e^{\frac{-i\pi}{3}},-1\right\}$, confeccionar la tabla de caracteres de Dirichlet.

Observar que $w = (-1)^{1/3} = \frac{1+\sqrt{3}i}{2} = e^{\frac{i\pi}{3}}$, $w^3 = -1$, por lo que la tabla requerida podría tener una estructura parecida a la del apartado anterior. Por ejemplo, para χ_{11}^n obtenemos

n	1	2	4	5	8	10	11	13	16	17	19	20
$\chi_{11}(n)$	1	-w	w^2	W	1	$-w^2$	w^2	-1	-w	$-w^2$	W	-1

por lo que tiene información suficiente para confeccionar la tabla requerida.

BIBLIOGRAFÍA

AIGNER y ZIEGLER, El Libro de las Demostraciones, ISBN: 84-95599-95-3

ALACA and KENNETH, Introductory Algebraic Number Theory, ISBN: 0-521-54011-9

ALEGRE ESPADA, Miguel y otros, Problemas sobre funciones de variable compleja, ISBN: 84-89607-30-3

APOSTOL, Tom M., Introducción a la Teoría Analítica de Números, ISBN: 84-291-5006-4

AYRES, Frank Jr., Álgebra Moderna, ISBN: 968-422-917-8

CLAPHAM, Christopher, Dictionary of Mathematics Originally, ISBN: 84-89784-56-6

COHN, Harvey, Advanced Number Theory, ISBN: 0-486-64023-X COQUILLAT, Fernando, Cálculo Integral, ISBN: 84-7360-017-7

GALÁN, PADILLA y RODRÍGUEZ, Análisis Vectorial, ISBN: 84-96486-18-4

NATHANSON, Melvyn B., Elementary Methods in Number Theory, ISBN: 0-387-98912-9

SHIDLOVSKI, A.B., Aproximaciones Diofánticas y Números Transcendentes, ISBN: 84-7585-156-8

SPIEGEL, Murray R., Variable Compleja, ISBN: 968-422-883-X

STOPPLE, Jeffrey, A Primer of Analytic Number Theory, ISBN: 0-521-01253-8 ZALDÍVAR, Felipe, Introducción a la Teoría de Grupos, ISBN: 968-36-3591-1

AYUDA INTERNET

http://en.wikipedia.org/wiki/Abelian_group

http://en.wikipedia.org/wiki/Dirichlet character

http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

http://hplusplus.files.wordpress.com/2009/01/investigacion-de-la-funcion-gamma-para-variable-

compleja.pdf (Excelente trabajo de investigación sobre la función Gamma y sus funciones generadas del profesor Harold L. Marzan)

http://lombok.demon.co.uk/mathToolkit/group/multiplicative (Orden multiplicativo de un grupo)

http://mathworld.wolfram.com/ (Todo el saber sobre Matemáticas (en inglés))

http://mathworld.wolfram.com/FundamentalUnit.html

http://maxima.programas-gratis.net/ (Programa de Matemáticas gratis, que puedes descargar e instalar)

http://www.branchingnature.org/Teoria_Grupos_Anillos_Dario_Sanchez_2004.pdf (Trabajo del profesor José Darío Sánchez Hernández, que recomendamos)

http://www.di-mgt.com/cgi-bin/dirichlet.cgi?k=13&submit=+Go+ (Generador de Carácter de Dirichlet)

http://www.esacademic.com/searchall.php?SWord=funcion+zeta+de+riemann&stype=0

http://www.miscelaneamatematica.org/Misc33/balanzario.pdf (sobre la función Zeta)

http://www.numbertheory.org/php/php.html#quadratic residues (Programa teoría de números)

http://www.uam.es/personal_pdi/ciencias/fchamizo/posgrado/STN_Caracteres.pdf (Importante trabajo del profesor Fernando Chamizo Lorente).

http://www.wolframalpha.com/examples/ (Programa de matemáticas en línea. Realiza todo tipo de operaciones)